Automorphisms of Supersingular K3 Surfaces and Salem Polynomials

نویسنده

  • Ichiro Shimada
چکیده

We use the notation defined in this paper. Let X be a supersingular K3 surface in characteristic p = p with Artin invariant σ = sigma. • GramSX[p, sigma] is a Gram matrix of the lattice Λp,σ, which is isomorphic to SX . • h0[p, sigma] is a vector h0 of Λp,σ with ⟨h0, h0⟩Λ > 0. • Rh0[p, sigma] is the set R(h0). • amplelist[p, sigma] is an ample list of vectors a = [h0, ρ1, . . . , ρK ]. We identify D(a) with N(X) by a suitable isometry Λp,σ →∼ SX . • sizeMs[p, sigma] is the length l of the list [M(h1), . . . ,M(hl)] of matrix representations of double plane involutions τ(hi) ∈ Aut(X) whose product τ(h1) · · · τ(hl) is of irreducible Salem type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Subgroups of the Mathieu Group M23 and Symplectic Automorphisms of Supersingular K3 Surfaces

We show that the Mathieu groups M22 and M11 can act on the supersingular K3 surface with Artin invariant 1 in characteristic 11 as symplectic automorphisms. More generally we show that all maximal subgroups of the Mathieu group M23 with three orbits on 24 letters act on a supersingular K3 surface with Artin invariant 1 in a suitable characteristic.

متن کامل

Automorphisms of even unimodular lattices and unramified Salem numbers

In this paper we study the characteristic polynomials S(x) = det(xI − F | IIp,q) of automorphisms of even, unimodular lattices with signature (p, q). In particular we show any Salem polynomial of degree 2n satisfying S(−1)S(1) = (−1)n arises from an automorphism of an indefinite lattice, a result with applications to K3 surfaces.

متن کامل

Dynamics on K3 surfaces: Salem numbers and Siegel disks

This paper presents the first examples of K3 surface automorphisms f : X → X with Siegel disks (domains on which f acts by an irrational rotation). The set of such examples is countable, and the surface X must be non-projective to carry a Siegel disk. These automorphisms are synthesized from Salem numbers of degree 22 and trace −1, which play the role of the leading eigenvalue for f∗|H2(X). The...

متن کامل

The Third Smallest Salem Number in Automorphisms of K3 Surfaces

We realize the logarithm of the third smallest known Salem number as the topological entropy of a K3 surface automorphism with a Siegel disk and a pointwisely fixed curve at the same time. We also show the logarithm of the Lehmer number, the smallest known Salem number, is not realizable as the topological entropy of any Enriques surface automorphism. These results are entirely inspired by McMu...

متن کامل

Rational double points on supersingular K3 surfaces

We investigate configurations of rational double points with the total Milnor number 21 on supersingular K3 surfaces. The complete list of possible configurations is given. As an application, we also give the complete list of extremal (quasi-)elliptic fibrations on supersingular K3 surfaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental Mathematics

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2016